Translation of "quadratic polynomial" to Chinese language:
Dictionary English-Chinese
Examples (External sources, not reviewed)
Quadratic | 二次cubic filter mode |
Quadratic Spline | 二次曲线 |
Bézier Quadratic | 添加二次曲线 |
Rational Bézier Quadratic | 有理贝塞尔二次曲线 |
Quadratic spline not closed | 二次曲线样条没有闭合 |
Select this Bézier Quadratic | 选择此贝塞尔二次曲线 |
Remove a Bézier Quadratic | 删除一条贝塞尔二次曲线 |
Add a Bézier Quadratic | 添加一条贝塞尔二次曲线 |
Move a Bézier Quadratic | 移动一条贝塞尔二次曲线 |
Show a Bézier Quadratic | 显示一条贝塞尔二次曲线 |
Hide a Bézier Quadratic | 隐藏一条贝塞尔二次曲线 |
Attach to this Bézier Quadratic | 附着于此贝塞尔二次曲线 |
Select this Rational Bézier Quadratic | 选择此有理贝塞尔二次曲线 |
Remove a Rational Bézier Quadratic | 删除一条有理贝塞尔二次曲线 |
Add a Rational Bézier Quadratic | 添加一条有理贝塞尔二次曲线 |
Move a Rational Bézier Quadratic | 移动一条有理贝塞尔二次曲线 |
Show a Rational Bézier Quadratic | 显示一条有理贝塞尔二次曲线 |
Hide a Rational Bézier Quadratic | 隐藏一条有理贝塞尔二次曲线 |
Bézier Quadratic by its Control Points | 根据控制点创建贝塞尔二次曲线 |
Attach to this Rational Bézier Quadratic | 附于此有理贝塞尔二次曲线 |
You could do the quadratic equation. | 可以用二次公式 |
A quadratic function cannot be used here. | 二次函数在这里是不可用的 |
Quadratic splines need at least 3 points. | 二次曲线样条至少需要 3 个点 |
Quadratic splines need at least 5 points. | 二次曲线样条至少需要 5 个点 |
Quadratic splines need at least 4 points. | 二次曲线样条至少需要 4 个点 |
Rational Bézier Quadratic by its Control Points | 根据控制点创建有理贝塞尔二次曲线 |
Construct a Bézier quadratic given its three control points. | 通过三个指定的控制点来建立贝塞尔二次曲线 |
Construct a quadratic Bézier curve with this control point | 根据此控制点建立一条贝塞尔二次曲线 |
Well, it's a way to solve a quadratic equation. | 是解二次方程的一种方法 |
The other option is to do the quadratic equation. | 另一个方法是二次公式 |
But the quadratic equation is essentially completing the square. | 二次公式本质就是配方 |
And maybe I'll show you in a future video, the quadratic equation and I think I've already done one where I proved the quadratic equation. | 之后的视频中我会讲到 其实我已经算是讲到了 |
Construct a Rational Bézier quadratic given its three control points. | 通过三个指定的控制点来建立有理贝塞尔二次曲线 |
Construct a quadratic rational Bézier curve with this control point | 根据此控制点建立一条有理贝塞尔二次曲线 |
Welcome to part two of the presentation on quadratic equations. | 欢迎收看 这是二次公式第二节 |
The quadratic equation is actually proven using completing the square. | 它其实是通过配方得到的 |
Now we have what looks like a fairly straightforward it's still a quadratic equation, actually, because if you were to expand this side you'd get a quadratic. | 这就非常好做了 仍然是二次方程 仍然是二次方程 |
See, normally in school, you do things like solve quadratic equations. | 通常在学校里 你会学习像解二次方程式这类题目 |
Now we just substitute these values into the actual quadratic equation. | 将这些值代入到二次公式中 |
But the quadratic equation is negative B So b is 5, right? | 公式中 B是5 |
And you will end up with the quadratic equation by this point. | 最后得到二次公式 |
Select a point to be a control point of the new quadratic Bézier curve... | 选择一个新有理贝塞尔二次曲线的控制点... |
But we can solve this without using the quadratic equation or without having to factor. | 却不需要公式法或因式分解了 却不需要公式法或因式分解了 |
Now, this is actually the hardest part with the quadratic equation is oftentimes just simplifying this expression. | 通常 二次公式最麻烦的 是化简这个式子 |
So as you see, the hardest thing with the quadratic equation is often just simplifying the expression. | 可见 二次公式最复杂的工作是化简 可见 二次公式最复杂的工作是化简 |
Related searches : Quadratic Equation - Quadratic Addition - Quadratic Regression - Quadratic Loss - Quadratic Programming - Quadratic Fit - Quadratic Function - Quadratic Relationship - Quadratic Curve - Quadratic Mean - Quadratic Torque - Polynomial Time