Translation of "quadratic polynomial" to Chinese language:


  Dictionary English-Chinese

Polynomial - translation : Quadratic - translation : Quadratic polynomial - translation :

  Examples (External sources, not reviewed)

Quadratic
二次cubic filter mode
Quadratic Spline
二次曲线
Bézier Quadratic
添加二次曲线
Rational Bézier Quadratic
有理贝塞尔二次曲线
Quadratic spline not closed
二次曲线样条没有闭合
Select this Bézier Quadratic
选择此贝塞尔二次曲线
Remove a Bézier Quadratic
删除一条贝塞尔二次曲线
Add a Bézier Quadratic
添加一条贝塞尔二次曲线
Move a Bézier Quadratic
移动一条贝塞尔二次曲线
Show a Bézier Quadratic
显示一条贝塞尔二次曲线
Hide a Bézier Quadratic
隐藏一条贝塞尔二次曲线
Attach to this Bézier Quadratic
附着于此贝塞尔二次曲线
Select this Rational Bézier Quadratic
选择此有理贝塞尔二次曲线
Remove a Rational Bézier Quadratic
删除一条有理贝塞尔二次曲线
Add a Rational Bézier Quadratic
添加一条有理贝塞尔二次曲线
Move a Rational Bézier Quadratic
移动一条有理贝塞尔二次曲线
Show a Rational Bézier Quadratic
显示一条有理贝塞尔二次曲线
Hide a Rational Bézier Quadratic
隐藏一条有理贝塞尔二次曲线
Bézier Quadratic by its Control Points
根据控制点创建贝塞尔二次曲线
Attach to this Rational Bézier Quadratic
附于此有理贝塞尔二次曲线
You could do the quadratic equation.
可以用二次公式
A quadratic function cannot be used here.
二次函数在这里是不可用的
Quadratic splines need at least 3 points.
二次曲线样条至少需要 3 个点
Quadratic splines need at least 5 points.
二次曲线样条至少需要 5 个点
Quadratic splines need at least 4 points.
二次曲线样条至少需要 4 个点
Rational Bézier Quadratic by its Control Points
根据控制点创建有理贝塞尔二次曲线
Construct a Bézier quadratic given its three control points.
通过三个指定的控制点来建立贝塞尔二次曲线
Construct a quadratic Bézier curve with this control point
根据此控制点建立一条贝塞尔二次曲线
Well, it's a way to solve a quadratic equation.
是解二次方程的一种方法
The other option is to do the quadratic equation.
另一个方法是二次公式
But the quadratic equation is essentially completing the square.
二次公式本质就是配方
And maybe I'll show you in a future video, the quadratic equation and I think I've already done one where I proved the quadratic equation.
之后的视频中我会讲到 其实我已经算是讲到了
Construct a Rational Bézier quadratic given its three control points.
通过三个指定的控制点来建立有理贝塞尔二次曲线
Construct a quadratic rational Bézier curve with this control point
根据此控制点建立一条有理贝塞尔二次曲线
Welcome to part two of the presentation on quadratic equations.
欢迎收看 这是二次公式第二节
The quadratic equation is actually proven using completing the square.
它其实是通过配方得到的
Now we have what looks like a fairly straightforward it's still a quadratic equation, actually, because if you were to expand this side you'd get a quadratic.
这就非常好做了 仍然是二次方程 仍然是二次方程
See, normally in school, you do things like solve quadratic equations.
通常在学校里 你会学习像解二次方程式这类题目
Now we just substitute these values into the actual quadratic equation.
将这些值代入到二次公式中
But the quadratic equation is negative B So b is 5, right?
公式中 B是5
And you will end up with the quadratic equation by this point.
最后得到二次公式
Select a point to be a control point of the new quadratic Bézier curve...
选择一个新有理贝塞尔二次曲线的控制点...
But we can solve this without using the quadratic equation or without having to factor.
却不需要公式法或因式分解了 却不需要公式法或因式分解了
Now, this is actually the hardest part with the quadratic equation is oftentimes just simplifying this expression.
通常 二次公式最麻烦的 是化简这个式子
So as you see, the hardest thing with the quadratic equation is often just simplifying the expression.
可见 二次公式最复杂的工作是化简 可见 二次公式最复杂的工作是化简

 

Related searches : Quadratic Equation - Quadratic Addition - Quadratic Regression - Quadratic Loss - Quadratic Programming - Quadratic Fit - Quadratic Function - Quadratic Relationship - Quadratic Curve - Quadratic Mean - Quadratic Torque - Polynomial Time